197

14MPa用チューブフランジ 締結形強力油圧シリンダ

140L-1

内径 ϕ 63 ~ ϕ 160、ストローク 200 ~ 3000mm 対応 の 14MPa チューブフランジ式複動油圧シリンダ。 高機能クッションの採用により、停止時のショックが 小さくなりました。

新設計のクッションバルブの採用により、クッション 調整が容易になりました。

クッションバルブは、安全対策として、抜け止め機構、 およびゆるみ止め用ロックナットを採用しました。 カバー用のリングシール、ねじ込み式チューブフラン ジを採用しました。

140H-8より剛性のある取付金具を使用。

標準仕様

種	類		標準形		
呼 び	圧	カ	14MPa		
最高部	下容 圧 🧷	力	ロッド側:Aロッド18MPa ヘッド側:Aロッド18MPa Bロッド18MPa Bロッド18MPa		
耐	圧 7	カ	21MPa		
最低化	動 圧 🧷	カ	ロッド側:Aロッド0.6 MPa以下 ヘッド側:0.3MPa以下 Bロッド0.45MPa以下		
使 用 返 (クッション	態度範[部は含まない	囲 1)	20 ~ 200mm/s		
使 用 温 度 範 囲 (周囲温度および油温)			- 10~+80 (但し、凍結なきこと)		
クッシ	ョン機材	構	メタル嵌合方式		
適合	作動;	油	一般鉱物性作動油 (その他の作動油をご使用の場合は作動油の適合表を参照してください。)		
ねじ	公	差	JIS6g/6H(JIS 2級相当)		
ストローク長さの許容差			200 ~ 630mm ^{+1.25} 631 ~ 1000mm ^{+1.4} 1001 ~ 1600mm ^{+1.6} 1601 ~ 2500mm ^{+1.8} 2501 ~ 3000mm ^{+3.0}		
支 持	形	τţ	LA形·FA形·FB形·CA形·CB形·TA形·TC形		
	防塵カバ-	_	標準:ナイロンターポリン 準標準:クロロプレン・コーネックス		
関連部品	先端金	具	1山(T先)・2山ピン付(Y先)		
ыг нн	その1	他	ロックナット		

用語説明

呼び圧力

呼称の便宜を図るためにシリンダに与える

定められた条件の下で性能を保証する使用 圧力(定格圧力)と必ずしも一致しない。

最高許容圧力

シリンダの内部に発生する圧力の許容でき る最高値(サージ圧力など)。

耐圧力

呼び圧力に復帰したときに性能の低下をも たらさずに耐えねばならない試験圧力。

最低作動圧力

無負荷で水平に設置されたシリンダが作動 する最低の圧力。

注) 負荷の慣性によりシリンダ内に発生 する油圧力は最高許容圧力以内にし てください。

> ピストンロッド先端ねじ部に、ロック ナットを付けて使用する場合は、ねじ 長さ(A寸法)を長くしてください。

> 内部構造につきましては、巻末の内部 構造図を参照してください。

単位:mm

防塵カバーのコーネックスは帝人株 式会社の登録商標です。

標準ストローク製作範囲

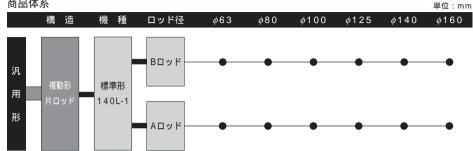
130 1 7 1 1 1 7 1201	1 平位.11111
内径	ストローク
φ63 ~ φ160	200 ~ 3000

上記は標準品として製作できるストローク範囲

ロッドの座屈は選定資料の座屈表にて別途良否 判定してください。

なお、これ以上および以下のストロークはご相談

クッション行程の長さ


内 径	クッション リング長さL	クッションリング 平行部長さ ℓ₁	ピストンロッド 平行部長さ ℓ ₂
φ63	25	7	10
φ80 ~ φ125	30	8	15
φ140 · φ160	30	12	15

ストロークエンドで使用できるクッション行程の長さです。

ストロークエンドで使用せず、5mm以上手前で停止させる場合は、クッショ ン効果が弱くなりますので、ご注意ください。なお、このような場合には、 別途ご相談ください。

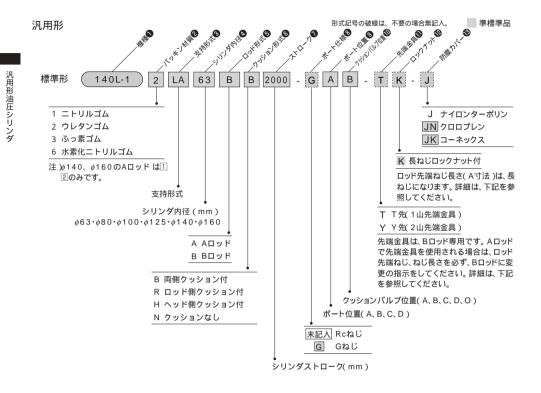
商品体系

作動油とパッキン材質の適合性

	適合作動油					
パッキン材質	一般鉱物 性作動油		リン酸エステ ル系作動油	W/O 作動油	O/W 作動油	
1 ニトリルゴム			×			
2 ウレタンゴム		×	×			
3 ふっ素ゴム		×				
6 水素化ニトリルゴム			×			

- 注)1. ・ 印は使用可、×印は使用不可を示し、 印は使用する場合はご相談ください。
 - 2. 印は耐摩耗性を重視する場合の推奨パッキン材質を示します。

質量表


章重化 単位:kg														
				支持金具質量 先端金具質量						具質量				
ロッド				L	A		-ED		CB	Τ,		1山	2Щ	ロックフ
11511	(30/15)	加算質量	中間サポート無し	中間サポート付	FA	FD	CA	СВ	IA	10	(T先)	(Y先)	ナット単体	標準
Α	12.8	0.021	1.12	2.36	1.65	2.68	1.46	2.06	0.54	1.61	-	-	0.48	0.81
В	12.3	0.016	1.12	2.36	1.50	2.68	1.46	2.06	0.54	1.61	2.51	3.97	0.22	0.36
Α	21.8	0.033	1.57	3.22	2.54	4.04	2.44	3.62	1.17	2.85	-	-	0.91	1.48
В	20.8	0.026	1.57	3.22	2.09	4.04	2.44	3.62	1.17	2.85	3.77	6.54	0.48	0.81
Α	33.0	0.051	2.44	5.44	5.10	7.68	4.90	7.14	2.87	5.52	-	-	1.84	3.10
В	31.2	0.041	2.44	5.44	4.22	7.68	4.90	7.14	2.82	5.52	7.47	12.62	0.91	1.48
Α	58.9	0.083	4.40	9.42	7.20	12.63	8.76	13.64	5.01	11.26	-	-	3.23	5.80
В	56.6	0.063	4.40	9.42	6.18	12.63	8.76	13.64	5.01	11.26	12.41	22.96	1.84	3.10
Α	86.5	0.108	8.18	14.89	8.68	16.80	11.73	18.65	7.55	15.76	-	-	5.16	9.60
В	81.7	0.086	8.18	14.89	7.08	16.80	11.73	18.65	7.44	15.76	19.17	33.75	2.50	4.42
Α	116.7	0.127	13.21	24.71	13.06	25.26	17.46	26.40	12.68	20.63	-	-	6.22	11.14
В	111.9	0.103	13.21	24.71	10.87	25.26	17.46	26.40	12.07	20.63	26.97	46.72	3.23	5.80
	ロッド 形式 A B A B A B A B	田ッド 基本質量 形式 (SD形) A 12.8 B 12.3 A 21.8 B 20.8 A 33.0 B 31.2 A 58.9 B 56.6 A 86.5 B 81.7 A 116.7	田ッド 形式	A 12.8 0.021 1.12 1.12 1.15	A 12.8 0.021 1.12 2.36 1.57 3.22 3.20 3.30 0.051 2.44 5.44 4 5.89 0.083 4.40 9.42 4 6.50	Tuning	大田 大田 大田 大田 大田 大田 大田 大田	Tung	Tung	大大 大下 大下 大下 大下 大下 大下 大下	大大 大下 大下 大下 大下 大下 大下 大下	大大 大下 大下 大下 大下 大下 大下 大下	大大 大 大 大 大 大 大 大 大	The color of t

注) ロックナット長ねじの質量は、ロックナット記号「K」の場合です。ロックナットにねじ部長さ延長分の質量が含まれます。 1山・2山先端金具は、Bロッド専用です。Aロッドで使用される場合は、先端ねじ径をBロッド先端ねじ径に変更してくださ 610

|計算式|| シリンダ質量(kg)= 基本質量 +(シリンダストロークmm×ストローク1mmあたりの加算質量)+ 支持金具質量 + 先端金 具質量

計算例 140L-1 Bロッド 内径∮100 シリンダストローク2000mm LA形 サポート無し) $31.2 + (2000 \times 0.041) + 2.44 = 115.64$ kg

199

☆ 標準仕様

両側クッション付 ポート位置A、クッションバル ブ位置B

☆ ポート位置の変更

位置変更の場合は、外形寸法図に表示されている記号 を記入してください。

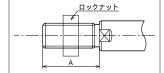
(表示例) 140L-1 2LA63BB2000 - B A - J ポート位置(A、B、C、D) クッションバルブ位置(A、B、C、D、0)

クッションなしの場合は、クッションバルブ位置表 示は 0 となります。

支持形式LAの場合、ポートおよびクッションバルブ 位置は、A、B、Dのいずれかとなります。C面を希 望の場合は、問い合せください。

ポートGねじ什様

ポートGねじ仕様の場合は、下記要領で手配してくださ


(表示例) 140L-1 2LA63BB2000-GAB-J

ポートGねじ仕様 ポート位置 クッションバルブ位置

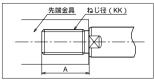
▼ ロックナット付手配時の注意事項

ロックナット付の場合、ロッド先端ねじ長さ(A寸法) は、長ねじになります。

(表示例) 140L-1 2LA63BB2000 - A B - K 長ねじロックナット付

ロックナット無し のA寸法 A = 3.5

長ねじロックナッ ト付のA寸法 A = 60


注)ロッド先端にロックナットを使用される場合は、長ねじロックナッ ト付のA寸法以上で、必ず使用してください。詳細は、ロックナッ ト外形図参照願います。

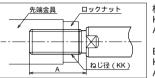
▼ Aロッド先端金具付手配時の注意事項

Aロッドで先端金具付の場合、標準Aロッド先端ねじ 径、ねじピッチおよびねじ長さを、必ず、標準Bロッド 先端ねじに変更の指示をしてください。

(表示例) 140L-1 2LA63AB2000 - A B - T

先端金具付(T先)

標準Aロッド KK=M39×1.5 A = 4.5


標準Bロッド KK=M30×1.5 A = 3.5

注)詳細は、先端金具外形図参照願います。

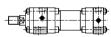
▼ Aロッド先端金具 + ロックナット付手配時の 注意事項

Aロッドで先端金具 + ロックナット付の場合、標準A ロッド先端ねじ径、ねじピッチおよびねじ長さを、必 ず、Bロッド先端ねじに変更し、ねじ長さ(A寸法)は 長ねじで指示してください。

(表示例) 140L-1 2LA63AB2000 - A B - TK 先端金具付(T先) 長ねじロックナット付

標準Aロッド KK=M39×1.5 A = 4.5

Bロッド $KK=M30\times1.5$ A=60(長ねじ)


注)ロッド先端にロックナットを使用される場合は、長ねじロックナッ ト付のA寸法以上で、必ず使用してください。詳細は、先端金具 外形図参照願います。

☆ 準標準製作範囲

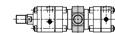
ピストンロッド先端部変更 TC金具の位置変更(寸法記号 PH) 防塵カバー付 シリンダチューブメッキ付 (硬質クロームメッキ付2/100mm) 作動流体仕様指示(水-グライコール系)

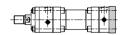
支持形式



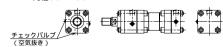
CA CA形 アイ形)

TA TA形(ロッド側トラニオン形)

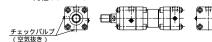

FA FA形(ロッド側フランジ形)


CB CB形 クレビス形)

TC TC形 中間トラニオン形)


FB FB形 ヘッド側フランジ形)

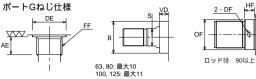
シリンダ内径によるクッションバルブ位置・チェックバルブ(空気抜き)位置の関係(ポートA面、クッションB面時)


ΑΠッド

内径63~160mm

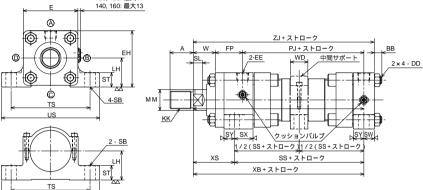
Bロッド

内径63~140mm



汎用形油圧シリンダ

LA

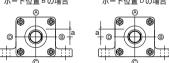

140L-1 2 LA 内径 B B ストローク

ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	ϕ 109.5	φ15	30

単位:mm

注) ϕ 160Bロッドはロッド径 ϕ 90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。

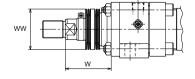

US 中間サポート詳細図

ロックナットを使用する場合のねじ長さ(A寸法)は、"ロックナット"を参照して ください。

C面位置のポートまたはクッションバルブ付の場合はご相談ください。

ポート位置が Bまたは Dの場合は下記の通りとなります。

ポート位置Dの場合


ストローク2501~3000mmにおいては、 たわみ防止用の中間サポートがシリンダ チューブの中央部付近に取付けてあります。 ロッド出寸法を変更される場合は「W」 寸法をご指示ください。

注)ポート位置がBまたは、Dの場合のa寸法。

	-	-				
内径記号	φ63	φ80	φ100	φ125	φ140	φ160
а	6	10	10	10	0	0

防塵カバー付

W寸法 Bロッド

	標準	準相	票準
材質	ナイロンターポリン	クロロプレン	コーネックス
耐熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

ナイロンターポリン	/φ63~φ100	1/4	ストローク + X \
ナイロンターポリン クロロプレン	$\phi 125 \sim \phi 160$	1/5	ストローク+X/
コーネックス	/φ63~φ100	1/3	ストローク + X \

`		
/φ63~φ100	1/3	ストローク + X \
(φ63 ~ φ100 φ125•φ140 φ160	1/3.5	ストローク+X
ÿ160	1/4	ストローク+X/

VI-U-0+V)	"
ストローク+X\	コ
ストローク+X	
ストローク+X丿	

Αロッド

ナイロンターポリン	/φ63·φ80	1/4	ストローク + X \
ナイロンターポリン クロロプレン	\\\phi 100 ~ \phi 160	1/5	ストローク+X/
コーネックス	$ \begin{pmatrix} \phi 6 3 \cdot \phi 8 0 \\ \phi 1 0 0 \\ \phi 1 2 5 \sim \phi 1 6 0 \end{pmatrix} $	1/3	ストローク+X\
	φ100	1/3.5	ストローク+X
	\$\\\phi\125 \cap \phi\160	1/4	ストローク + X

計算値に小数未満の端数が出た場合は、切り上げてください。

寸法表

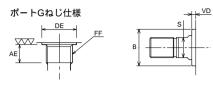
単位:mm

記号			E	3ロッド					Aロッド							
内径	Α	В	KK	MM	S	SL	VD	W	Α	В	KK	MM	S	SL	VD	W
<i>φ</i> 63	35	φ55	M30 × 1.5	φ36	30	16	15	43	45	φ65	M39 × 1.5	φ45	41	20	19	43
φ80	45	φ65	M39 × 1.5	φ45	41	20	12	48	55	<i>φ</i> 80	M48 × 1.5	φ56	50	23	19	48
φ100	55	φ80	M48 × 1.5	φ56	50	23	15	53	75	<i>φ</i> 95	M64 × 2	φ 7 0	65	27	19	53
φ125	75	φ95	M64 × 2	φ70	65	27	19	60	90	φ120	M80 x 2	φ90	_	_	28	60
φ140	80	φ105	M72 × 2	φ80	75	31	15	60	105	φ130	M95 × 2	φ100	-	_	24	60
φ160	90	φ120	M80 × 2	φ90	85	33	15	60	110	φ140	M100 × 2	φ110	_	_	24	60
===																

記号 内径	AE	BB	DD	DE	Е	EE	EH	FF	FP	LH	PJ	SB	SS	ST	SW	SX	SY
φ63	14	15以下	M14 × 1.5	φ30	94	Rc1/2	97	G1/2	47	50±0.15	109	<i>φ</i> 18	123	25	18	32	18
φ80	16	19以下	M16 × 1.5	φ36.9	114	Rc3/4	117	G3/4	57	60±0.25	125	<i>φ</i> 18	143	30	20	39	21
φ100	16	19以下	M18 × 1.5	φ36.9	135	Rc3/4	137.5	G3/4	61	70±0.25	132	<i>φ</i> 22	150	35	18	37	23
φ125	18	24以下	M22 x 1.5	φ46.1	165	Rc1	167.5	G1	73	85±0.25	150	<i>φ</i> 26	173	45	23	47	28
φ140	18	25以下	M27 × 2	φ46.1	192	Rc1	196	G1	81	100±0.25	160	φ30	183	45	28	47	28
φ160	18	30以下	M30 × 2	φ46.1	218	Rc1	224	G1	86	115±0.25	179	φ33	202	55	30	45	30

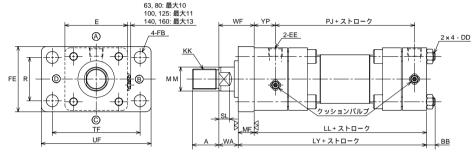
記号 内径	TS	US	WD	ХВ	XS	ZJ
φ63	136	169	30	199	76	217
φ80	155	190	30	230	87	250
φ100	190	230	40	248	98	266
φ125	224	272	50	285	112	308
φ140	262	320	50	303	120	331
φ160	294	356	65	329	127	359

ВП	ッド	Aロッド				
ww	Х	WW	Х			
φ71	55	φ80	55			
φ80	55	φ100	55			
φ100	55	φ125	65			
φ125	65	φ140	65			
φ125	65	φ160	65			
φ140	65	φ180	65			
	WW φ71 φ80 φ100 φ125 φ125	 φ71 55 φ80 55 φ100 55 φ125 65 φ125 65 	WW X WW \$\phi 71\$ 55 \$\phi 80\$ \$\phi 80\$ 55 \$\phi 100\$ \$\phi 100\$ 55 \$\phi 125\$ \$\phi 125\$ 65 \$\phi 140\$ \$\phi 125\$ 65 \$\phi 160\$			


・ロッド径 90以上

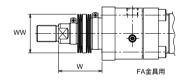
汎用形油圧シリンダ

汎用形油圧シリンダ


FA

140L-1 2 FA 内径 B B ストローク

ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30


注) Ø160Bロッドはロッド径Ø90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ナット "を参照してください。

ロッド出寸法を変更される場合は「WA」寸法 をご指示ください。

防塵カバー付

	標準	準相	票準
材質	ナイロンターポリン	クロロプレン	コーネックス
耐 熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

W寸法 Вロッド

ナイロンターポリン $/\phi 63 \sim \phi 100 \quad 1/4 \quad \text{A} = -D + X \quad \text{T} = -D + 3 = 0$ クロロプレン コーネックス ÿ160 1/4 ストローク+X

 $\begin{pmatrix} \phi & 125 \sim \phi & 160 & 1/5 & ストローク + X \end{pmatrix}$ クロロプレン /φ63~φ100 1/3 ストローク+X\ φ125·φ140 1/3.5 ストローク+X

計算値に小数未満の端数が出た場合は、切り上げてください。 支持形式FAのグランドブシュと防塵カバー付の場合のグランド ブシュは異なります。

Αロッド

1/4 ストローク+X $\sqrt{\phi 100 \sim \phi 160 \ 1/5} \ \ A \vdash \Box - D + X$ コーネックス / φ63· φ80 1/3 ストローク+X\ φ100 1/3.5 ストローク + X

寸法表

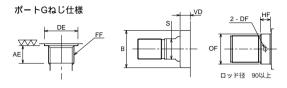
単位:mm

記号		ВПッド									Aロッド							
内径	Α	В	KK	MM	S	SL	VD	WA	WF	Α	В	KK	MM	S	SL	VD	WA	WF
φ63	35	φ55	M30 × 1.5	φ36	30	16	6	34	58	45	φ65	M39 × 1.5	φ45	41	20	10	34	58
<i>φ</i> 80	45	φ65	M39 × 1.5	φ45	41	20	6	42	66	55	φ80	M48 × 1.5	φ56	50	23	13	42	66
φ100	55	φ80	M48 × 1.5	φ 5 6	50	23	6	44	75	75	φ95	M64 × 2	<i>φ</i> 70	65	27	10	44	75
φ125	75	φ95	M64×2	<i>φ</i> 70	65	27	6	47	84	90	φ120	M80 × 2	φ90	_	-	15	47	84
φ140	80	φ105	M72×2	φ80	75	31	6	51	92	105	φ130	M95 x 2	φ100	-	-	15	51	92
φ160	90	φ120	M80×2	φ90	85	33	6	51	97	110	φ140	M100 × 2	φ110	-	-	15	51	97

強力油圧シリンダ

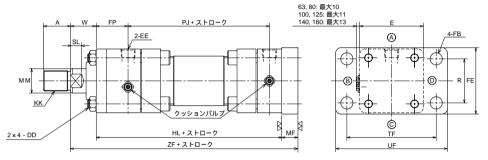
14MPa用チュープフランジ締結形

記号	. AE	BB	DD	DE	Е	EE	FB	FF	F	E	LL	LY	MF	PJ	R	TF
内径	AL	DD	DD	DE			ГВ	ГГ	Вロッド	Aロッド	LL	LT	IVIF	PJ	K	IF
ϕ 63	14	15以下	M14 × 1.5	φ30	94	Rc1/2	φ18	G1/2	98	105	159	183	24	109	65	132
φ80	16	19以下	M16 × 1.5	φ36.9	114	Rc3/4	φ18	G3/4	125	140	184	208	24	125	87	155
φ100	16	19以下	M18 × 1.5	φ36.9	135	Rc3/4	φ22	G3/4	150	165	191	222	31	132	109	190
φ125	18	24以下	M22 × 1.5	φ46.1	165	Rc1	φ26	G1	175	195	224	261	37	150	130	224
ϕ 140	18	25以下	M27 × 2	φ46.1	192	Rc1	φ30	G1	195	215	234	275	41	160	145	250
φ160	18	30以下	M30 × 2	φ46.1	218	Rc1	φ33	G1	225	245	253	299	46	179	170	285


記号 内径	UF	YP
φ63	165	32
φ80	190	39
φ100	230	39
φ125	272	49
φ140	300	49
φ160	345	49

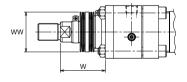
記号	ВП	ッド	Aロッド					
内径	WW	Х	WW	Х				
ϕ 63	φ71	55	φ80	55				
ϕ 80	<i>φ</i> 80	55	φ100	55				
ϕ 100	φ100	55	φ125	65				
φ125	φ125	65	φ140	65				
φ140	φ125	65	φ160	65				
φ160	φ140	65	φ180	65				

14MPa用チュープフランジ締結形 強力油圧シリンダ


単位:mm

140L-1 2 FB 内径 B B ストローク

ロッド径	OF	DF	HF
ϕ 90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30


注) ø160Bロッドはロッド径ø90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ナット"を参照してください。

ロッド出寸法を変更される場合は「W」寸法を ご指示ください。

防塵カバー付

	標準	準相	票準
材質	ナイロンターポリン	クロロプレン	コーネックス
耐 熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

W 寸法 Bロッド

ナイロンターポリン $/\phi63\sim\phi100$ 1/4 ストローク+X\ ナイロンターポリン クロロプレン コーネックス $/\phi 63 \sim \phi 100 \quad 1/3 \quad \text{A} \vdash \Box - D + X \setminus$ | ø125⋅ø140 1/3.5 ストローク+X φ160 1/4 ストローク + X

コーネックス

計算値に小数未満の端数が出た場合は、切り上げてください。

Αロッド

/φ63·φ80 1/4 ストローク+X\ $\sqrt{\phi_{100} \sim \phi_{160} \ 1/5} \ \ Z + \Box - D + X /$ /φ63·φ80 1/3 ストローク + X \ φ100 1/3.5 ストローク + X

14MPa用チュープフランジ締結形 強力油圧シリンダ

205

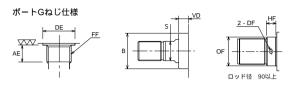
汎用形油圧シリンダ

寸法表

単位:mm

記号	Bロッド							Aロッド								
内径	А	В	KK	MM	S	SL	VD	W	Α	В	KK	MM	S	SL	VD	W
ϕ 63	35	φ55	M30 × 1.5	<i>φ</i> 36	30	16	15	43	45	<i>φ</i> 65	M39 x 1.5	φ45	41	20	19	43
φ80	45	φ65	M39 x 1.5	φ 4 5	41	20	12	48	55	<i>φ</i> 80	M48 × 1.5	φ56	50	23	19	48
φ100	55	φ80	M48 × 1.5	<i>φ</i> 56	50	23	15	53	75	φ95	M64 × 2	φ 7 0	65	27	19	53
φ125	75	φ95	M64 × 2	<i>φ</i> 70	65	27	19	60	90	<i>φ</i> 120	M80×2	φ90	_	_	28	60
ϕ 140	80	φ105	M72 x 2	<i>φ</i> 80	75	31	15	60	105	φ130	M95 × 2	φ100	_	_	24	60
φ160	90	φ120	M80 × 2	<i>φ</i> 90	85	33	15	60	110	φ140	M100 × 2	φ110	-	-	24	60

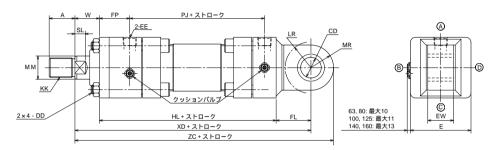
記号 内径	AE	DD	DE	E	EE	FB	FE	FF	FP	HL	MF	PJ	R	TF
φ63	14	M14 × 1.5	φ30	94	Rc1/2	φ18	98	G1/2	47	174	24	109	65	132
φ80	16	M16 × 1.5	φ36.9	114	Rc3/4	<i>φ</i> 18	125	G3/4	57	202	24	125	87	155
φ100	16	M18 × 1.5	φ36.9	135	Rc3/4	φ22	150	G3/4	61	213	31	132	109	190
φ125	18	M22 × 1.5	φ46.1	165	Rc1	<i>φ</i> 26	175	G1	73	248	37	150	130	224
φ140	18	M27 × 2	φ46.1	192	Rc1	φ30	195	G1	81	266	41	160	145	250
φ160	18	M30 × 2	φ46.1	218	Rc1	φ33	225	G1	86	290	46	179	170	285


記号 内径	UF	ZF
φ63	165	241
φ80	190	274
φ100	230	297
φ125	272	345
ϕ 140	300	367
φ160	345	396

記号	ВП	ッド	ΑП	ッド
内径	WW	Х	WW	Х
ϕ 63	φ71	55	φ80	55
ϕ 80	φ80	55	φ100	55
ϕ 100	φ100	55	φ125	65
φ125	φ125	65	φ140	65
φ140	φ125	65	φ160	65
φ160	φ140	65	φ180	65

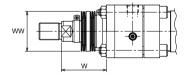
汎用形油圧シリンダ

CA


140L-1 2 CA 内径 B B ストローク

ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30

単位:mm


注)ø160Bロッドはロッド径ø90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ナット"を参照してください。

ロッド出寸法を変更される場合は「W」寸法を ご指示ください。

防塵カバー付

	標準	準相	票準
材 質	ナイロンターポリン	クロロプレン	コーネックス
耐 熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

Αロッド

W寸法 Bロッド

ナイロンターポリン /ø63~ø100 1/4 ストローク+X\ ナイロンターポリン /ø63·ø80 クロロプレン コーネックス $/\phi 63 \sim \phi 100 \quad 1/3 \quad \text{A} \vdash \Box - D + X \setminus \Box$ ∅125・∅140 1/3.5 ストローク + X \φ160 1/4 ストローク + X

1/4 ストローク+X\ $\phi 100 \sim \phi 160 \ 1/5 \ \ A \vdash \Box - D + X$ コーネックス /φ63·φ80 1/3 ストローク+X\ φ100 1/3.5 ストローク+X

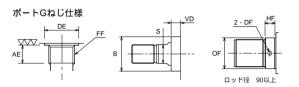
計算値に小数未満の端数が出た場合は、切り上げてください。

寸法表

単位: mm

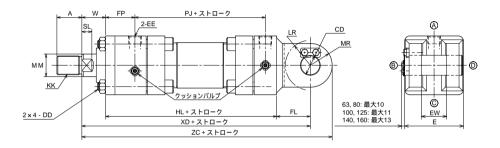
記号	号 Bロッド								Aロッド							
内径	Α	В	KK	MM	S	SL	VD	W	А	В	KK	MM	S	SL	VD	W
φ63	35	φ55	M30 x 1.5	φ36	30	16	15	43	45	φ65	M39 × 1.5	φ45	41	20	19	43
φ80	45	φ65	M39 × 1.5	φ45	41	20	12	48	55	φ80	M48 × 1.5	<i>φ</i> 56	50	23	19	48
φ100	55	φ80	M48 × 1.5	φ 5 6	50	23	15	53	75	φ95	M64 x 2	φ70	65	27	19	53
φ125	75	φ95	M64 × 2	φ70	65	27	19	60	90	φ120	M80 × 2	φ90	-	_	28	60
φ140	80	φ105	M72 × 2	φ80	75	31	15	60	105	φ130	M95 x 2	φ100	-	_	24	60
φ160	90	φ120	M80 × 2	<i>φ</i> 90	85	33	15	60	110	φ140	M100 x 2	φ110	-	_	24	60

強力油圧シリンダ


14MPa用チュープフランジ締結形

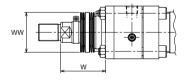
記号 内径	AE	CD	DD	DE	E	EE	EW	FF	FL	FP	HL	LR	MR	PJ
φ63	14	φ32H10	M14 × 1.5	φ30	94	Rc1/2	40 -0.1	G1/2	54	47	174	R40	R35	109
φ80	16	φ40H10	M16 × 1.5	φ36.9	114	Rc3/4	50 ^{-0.1} _{-0.4}	G3/4	66	57	202	R50	R40	125
φ100	16	φ50H10	M18 × 1.5	φ36.9	135	Rc3/4	63 -0.1	G3/4	79	61	213	R63	R50	132
φ125	18	φ63H10	M22 × 1.5	φ46.1	165	Rc1	80 -0.1	G1	90	73	248	R71	R63	150
φ140	18	φ70H10	M27 x 2	φ46.1	192	Rc1	90 -0.1	G1	99	81	266	R80	R70	160
φ160	18	φ80H10	M30×2	φ46.1	218	Rc1	100 -0.1	G1	110	86	290	R90	R80	179

記号 内径	XD	ZC
ϕ 63	271	306
φ80	316	356
φ100	345	395
φ125	398	461
φ140	425	495
φ160	460	540


記号	ВД	ッド	Aロッド		
内径	WW	Х	WW	Х	
ϕ 63	φ71	55	φ80	55	
ϕ 80	<i>φ</i> 80	55	φ100	55	
ϕ 100	φ100	55	φ125	65	
φ125	φ125	65	φ140	65	
φ140	φ125	65	φ160	65	
φ160	φ140	65	φ180	65	

140L-1 2 CB 内径 B B ストローク

ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30


注)ø160Bロッドはロッド径ø90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ナット"を参照してください。

ロッド出寸法を変更される場合は「W」寸法を ご指示ください。

防塵カバー付

	標準	準核	票準
材 質	ナイロンターポリン	クロロプレン	コーネックス
耐 熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

W 寸法 Bロッド

ナイロンターポリン $/\phi63\sim\phi100$ 1/4 ストローク + X\ ナイロンターポリン $/\phi63\cdot\phi80$ $\begin{pmatrix} \phi & 125 \sim \phi & 160 & 1/5 & 2 \end{pmatrix}$ ストローク + X $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ クロロプレン クロロプレン コーネックス $/\phi 63 \sim \phi 100 \quad 1/3 \quad \text{A} \vdash \Box - D + X \setminus$ $\phi 125 \cdot \phi 140 \quad 1/3.5 \ \text{Z} + \Pi - D + X$ φ160 1/4 ストローク+X/

計算値に小数未満の端数が出た場合は、切り上げてください。

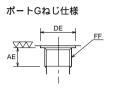
Αロッド

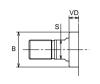
1/4 ストローク+X\ $\sqrt{\phi 100 \sim \phi 160 \ 1/5} \ \ A \vdash \Box - D + X$ コーネックス /φ63·φ80 1/3 ストローク+X\ φ100 1/3.5 ストローク + X

14MPa用チュープフランジ締結形 強力油圧シリンダ

寸法表

単位: mm

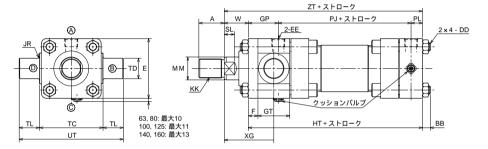

記	클	ВПッド									Aロッド							
内径	А	В	KK	MM	S	SL	VD	W	Α	В	KK	MM	S	SL	VD	W		
ϕ 63	35	φ55	M30 × 1.5	φ36	30	16	15	43	45	φ65	M39 x 1.5	φ45	41	20	19	43		
φ80	45	φ65	M39 × 1.5	φ45	41	20	12	48	55	<i>φ</i> 80	M48 × 1.5	<i>φ</i> 56	50	23	19	48		
ϕ 100	55	φ80	M48 × 1.5	φ56	50	23	15	53	75	φ95	M64 × 2	φ70	65	27	19	53		
φ125	75	φ95	M64 × 2	<i>φ</i> 70	65	27	19	60	90	φ120	M80×2	<i>φ</i> 90	_	_	28	60		
φ140	80	φ105	M72 x 2	φ80	75	31	15	60	105	φ130	M95 × 2	φ100	_	_	24	60		
φ160	90	φ120	M80 × 2	<i>φ</i> 90	85	33	15	60	110	φ140	M100 x 2	φ110	-	-	24	60		


記号 内径	AE	CD	DD	DE	E	EE	EW	FF	FL	FP	HL	LR	MR	PJ
φ63	14	φ32 H10 f8	M14 × 1.5	φ30	94	Rc1/2	40 +0.4	G1/2	54	47	174	R40	R35	109
φ80	16	φ40 H10 f8	M16 × 1.5	φ36.9	114	Rc3/4	50 ^{+0.4} _{+0.1}	G3/4	66	57	202	R50	R40	125
φ100	16	φ50 H10 f8	M18 × 1.5	φ36.9	135	Rc3/4	63 +0.4	G3/4	79	61	213	R63	R50	132
φ125	18	φ63 H10 f8	M22 × 1.5	φ46.1	165	Rc1	80 +0.6	G1	90	73	248	R71	R63	150
φ140	18	φ70 H10 f8	M27 × 2	φ46.1	192	Rc1	90 +0.6	G1	99	81	266	R80	R70	160
φ160	18	φ80 H10 f8	M30 × 2	φ46.1	218	Rc1	100 +0.6	G1	110	86	290	R90	R80	179

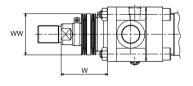
記号 内径	XD	ZC
ϕ 63	271	306
φ80	316	356
φ100	345	395
φ125	398	461
φ140	425	495
φ160	460	540

記号	ВП	ッド	ΑП	ッド
内径	WW	Х	WW	Х
ϕ 63	φ71	55	φ80	55
ϕ 80	<i>φ</i> 80	55	φ100	55
ϕ 100	φ100	55	φ125	65
φ125	φ125	65	φ140	65
φ140	φ125	65	φ160	65
φ160	φ140	65	φ180	65
φ160	φ140	65	φ180	65

140L-1 2 TA 内径 B B ストローク



ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30


注)ø160Bロッドはロッド径ø90 ですが二面幅になります。

クッションバルブ位置は内径により異なります。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ナット"を参照してください。

ロッド出寸法を変更される場合は「W」寸法を ご指示ください。

防塵カバー付

	標準	準机	票準
材 質	ナイロンターポリン	クロロプレン	コーネックス
耐熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

W寸法 Bロッド

ナイロンターポリン クロロプレン $\begin{pmatrix} \phi & 125 & \phi & 160 & 1/5 & 2 & 160 & 1/5 & 2 & 160 & 1/5 & 2 & 160 &$ コーネックス $/\phi 63 \sim \phi 100 \quad 1/3 \quad \text{A} = -D + X \setminus 1/2 \quad \text{A} = -D + 1/2 \quad \text{$

φ125·φ140 1/3.5 ストローク+X ϕ 160 1/4 ストローク + X

計算値に小数未満の端数が出た場合は、切り上げてください。

Αロッド

 $/\phi 63 \sim \phi 100 \quad 1/4 \quad \text{A} = -0.00 + \text{A} \quad \text{full} = -0.00 + \text{A} = -0.00 + \text{$ 1/4 ストローク+X /φ63·φ80 コーネックス 1/3 ストローク+X\ φ100 1/3.5 ストローク+X $\phi 125 \sim \phi 160 1/4$ ストローク + X

強力油圧シリンダ

14MPa用チュープフランジ締結形

寸法表

単位: mm

記号		ВПッド									Aロッド							
内径	Α	В	KK	MM	S	SL	VD	W	Α	В	KK	MM	S	SL	VD	W		
ϕ 63	35	φ55	M30 × 1.5	φ36	30	16	15	43	45	φ65	M39 x 1.5	φ45	41	20	19	43		
φ80	45	φ65	M39 × 1.5	φ45	41	20	12	48	55	<i>φ</i> 80	M48 × 1.5	<i>φ</i> 56	50	23	19	48		
φ100	55	φ80	M48 × 1.5	φ 5 6	50	23	15	53	75	<i>φ</i> 95	M64 x 2	φ70	65	27	19	53		
φ125	75	φ95	M64 × 2	φ70	65	27	19	60	90	φ120	M80 x 2	φ90	-	_	28	60		
φ140	80	φ105	M72 × 2	φ80	75	31	15	60	105	φ130	M95 x 2	φ100	-	_	24	60		
φ160	90	φ120	M80 × 2	φ90	85	33	15	60	110	φ140	M100 × 2	φ110	-	_	24	60		

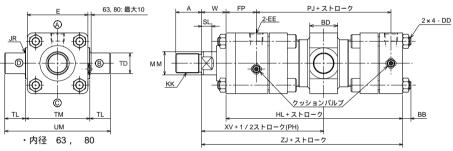
記号 内径	AE	BB	DD	DE	E	EE	F	FF	GP	GT	нт	JR	PJ	PL	TC
φ63	14	14	M14 × 1.5	φ30	94	Rc1/2	15	G1/2	47	50	174	R2.5	109	18	100 0
φ80	16	16	M16 × 1.5	φ36.9	114	Rc3/4	18	G3/4	57	60	202	R3	125		125 0 -0.4
φ100	16	18	M18 × 1.5	φ36.9	135	Rc3/4	22	G3/4	66	65	218	R3	132	20	155 ⁰ _{-0.4}
φ125	18	21	M22 × 1.5	φ46.1	165	Rc1	24	G1	73	75	248	R4	150	25	195 0 -0.46
ϕ 140	18	25	M27 × 2	φ46.1	192	Rc1	32	G1	86	80	271	R4	160	25	220 0 -0.46
φ160	18	27	M30 × 2	φ46.1	218	Rc1	37	G1	111	100	315	R4	179	25	240 0 -0.46

記号 内径	TD	TL	UT	XG	ZT
ϕ 63	φ32e9	32	164	83	217
<i>φ</i> 80	φ40e9	40	205	96	250
φ100	φ50e9	50	255	107	271
φ125	φ63e9	63	321	122	308
φ140	φ70e9	70	360	132	331
φ160	φ80e9	80	400	147	375

記号	ВП	ッド	ΑП	Aロッド				
内径	WW	Х	WW	Х				
ϕ 63	φ71	55	<i>φ</i> 80	55				
ϕ 80	<i>φ</i> 80	55	φ100	55				
φ100	φ100	55	φ125	65				
φ125	φ125	65	φ140	65				
φ140	φ125	65	φ160	65				
φ160	φ140	65	φ180	65				

·内径 100~ 160

汎用形油圧シリンダ

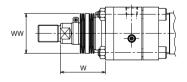

単位:mm

汎用形油圧シリンダ

TC ポートGねじ仕様 140L-1 2 TC 内径 B B ストローク 100, 125: 最大11 140, 160: 最大13 ロッド径 90以上

ロッド径	OF	DF	HF
φ90	ϕ 89.5	φ12	28
φ100	ϕ 99.5	φ12	28
φ110	φ109.5	φ15	30

注) ø160Bロッドはロッド径ø90 ですが二面幅になります。



Aロッド

クッションバルブ位置は内径により異なります。 ストロークが短い場合や、PH寸法が短い場合は、クッション バルブ位置に注意してください。 ロックナットを使用する場合のねじ長さ(A寸法)は、"ロック ロッド出寸法を変更される場合は「W」寸法を ご指示ください。

防塵カバー付

ナット "を参照してください。

	標準	準相	票準
材質	ナイロンターポリン	クロロプレン	コーネックス
耐 熱	80	130	200

注) 耐熱は防塵カバーの耐熱温度を示したものです。 シリンダ本体の耐熱温度とは異なります。 防塵カバーは、シリンダに取付けて発送いたします。 コーネックスは帝人株式会社の登録商標です。

W 寸法 Bロッド

ナイロンターポリン クロロプレン	$ \begin{pmatrix} \phi 6 3 \sim \phi 1 0 0 \\ \phi 1 2 5 \sim \phi 1 6 0 \end{pmatrix} $	1/4 1/5	ストローク + X ストローク + X
コーネックス	$ \begin{pmatrix} \phi 63 \sim \phi 100 \\ \phi 125 \cdot \phi 140 \\ \phi 160 \end{pmatrix} $	1/3	ストローク + X
	φ125·φ140	1/3.5	ストローク + X
	\ø160	1/4	ストローク+X

ナイロンターポリン クロロプレン	$ \begin{pmatrix} \phi 63 \cdot \phi 80 \\ \phi 100 \sim \phi 160 \end{pmatrix} $	1/4 1/5	ストローク+X ストローク+X
	φ100	1/3.5	ストローク+X
	\\dota125~\dota160	1/4	ストローク+X丿

計算値に小数未満の端数が出た場合は、切り上げてください。

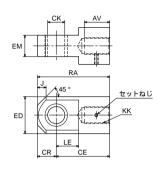
寸法表

	記号			E	3ロッド					Aロッド							
内径	<u> </u>	Α	В	KK	MM	S	SL	VD	W	Α	В	KK	MM	S	SL	VD	W
9	φ63	35	φ55	M30 x 1.5	φ36	30	16	15	43	45	φ65	M39 × 1.5	φ45	41	20	19	43
9	φ80	45	φ65	M39 x 1.5	φ45	41	20	12	48	55	<i>φ</i> 80	M48 × 1.5	φ56	50	23	19	48
ϕ 1	100	55	φ80	M48 × 1.5	φ56	50	23	15	53	75	φ95	M64 × 2	φ70	65	27	19	53
φ1	125	75	φ95	M64 × 2	φ 7 0	65	27	19	60	90	φ120	M80×2	φ90	-	_	28	60
φ1	140	80	φ105	M72 × 2	φ80	75	31	15	60	105	φ130	M95 × 2	φ100	-	-	24	60
φ 1	160	90	φ120	M80 × 2	φ90	85	33	15	60	110	φ140	M100 × 2	φ110	-	-	24	60

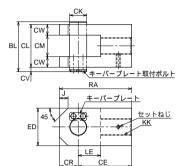
強力油圧シリンダ

14MPa用チュープフランジ締結形

記号 内径	AE	ВВ	BD	DD	DE	Е	EE	FF	FP	HL	JR	最小PH寸法	PJ	ТМ
φ63	14	φ15以下	43	M14 × 1.5	φ30	94	Rc1/2	G1/2	47	174	R2.5	185	109	100 0
φ80	16	<i>ϕ</i> 19以下	53	M16 × 1.5	φ36.9	114	Rc3/4	G3/4	57	202	R3	215	125	125 0
φ100	16	φ19以下	63	M18 × 1.5	φ36.9	135	Rc3/4	G3/4	61	213	R3	240	132	155 ⁰
φ125	18	φ24以下	78	M22 × 1.5	φ46.1	165	Rc1	G1	73	248	R4	285	150	195 ⁰ _{-0.46}
φ140	18	φ25以下	88	M27 x 2	φ46.1	192	Rc1	G1	81	266	R4	309	160	220 0
φ160	18	φ30以下	98	M30 × 2	φ46.1	218	Rc1	G1	86	290	R4	327	179	240 0


記号 内径	TD	TL	UM	UW	XV	ZJ
φ63	φ32e9	32	164	_	144.5	217
φ80	φ40e9	40	205	_	167.5	250
φ100	φ50e9	50	255	146	180	266
φ125	φ63e9	63	321	185	208	308
φ140	φ70e9	70	360	210	221	326
φ160	φ80e9	80	400	230	235.5	350

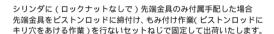
記号	ВП	ッド	ΑП	ッド
内径	WW	Х	WW	Х
ϕ 63	φ71	55	φ80	55
ϕ 80	<i>φ</i> 80	55	φ100	55
ϕ 100	φ100	55	φ125	65
φ125	φ125	65	φ140	65
φ140	φ125	65	φ160	65
φ160	φ140	65	φ180	65


215

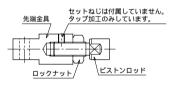
先端金具

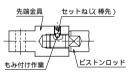
1山先端金具(T先)

2山先端金具(Y先)ピン付

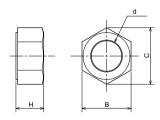


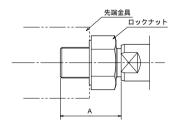
単位:mm


A ロッドで使用される場合は、ロッド先端ねじ径をBロッドねじ径に変更してください。


先端金具(T先・Y先)付のシリンダ出荷方法について

シリンダにロックナットと先端金具を付属手配した場合 先端金具とロックナットをピストンロッドに仮組みして出荷いたしま す。ロックナットを締付けていませんので、先端金具の位置を調整した 後ロックナットを締付けてください。 セットねじは付属していません。




もみ付け作業不要の場合は別途ご指示ください。

ロックナット

先端金具とピストンロッドの嵌合長さの目安は、ねじ 径の80%程度であるため、ロックナット付を手配さ れた場合、A寸法は長ねじとなります。

寸法表 / 1山先端金具 (T先)

記号		ВПッド											
内径	部品形式	AV	CE	CK	CR	ED	EM	J	KK	LE	RA		
ϕ 63	RTH-30-2-H	40	95	φ32H10	35	φ70	40 -0.1	16	M30 × 1.5	42	130		
φ80	RTH-39-2-H	53	110	φ40H10	40	<i>φ</i> 80	50 ^{-0.1} _{-0.4}	15	M39 x 1.5	52	150		
φ100	RTH-48-2-H	62	135	φ50H10	50	φ98	63 -0.1	20	M48 × 1.5	65	185		
φ125	RTH-64-3-H	80	160	φ63H10	63	φ118	80 -0.1	30	M64 x 2	75	223		
φ140	RTH-72-3-H	87	180	φ70H10	70	φ138	90 -0.1	35	M72 x 2	82	250		
φ160	RTH-80-3-H	96	195	φ80H10	80	φ158	100 -0.1	40	M80 × 2	94	275		

強力油圧シリンダ

14MPa用チュープフランジ締結形

寸法表 / 2山先端金具 (Y先)ピン付

記号		ВПッド													
内径	部品形式	BL	CE	СК	CL	CM	CR	CV	CW	ED	J	KK	LE	RA	
φ63	RYH-30-1-H	93	95	$\phi 32 \frac{H10}{f8}$	80	40 +0.4	35	8	20	70	16	M30 x 1.5	42	130	
φ80	RYH-39-2-H	117	110	φ40 H10 f8	100	50 ^{+0.4} _{+0.1}	40	12	25	80	15	M39 × 1.5	52	150	
ϕ 100	RYH-48-2-H	143	135	φ50 H10 f8	126	63 +0.4	50	12	31.5	100	20	M48 × 1.5	65	185	
φ125	RYH-64-3-H	183	160	$\phi 63 \frac{H10}{f8}$	160	80 +0.6	63	18	40	120	30	M64×2	75	223	
φ140	RYH-72-3-H	203	180	φ70 H10 f8	180	90 +0.6	70	18	45	140	35	M72×2	82	250	
φ160	RYH-80-3-H	223	195	$\phi 80 \frac{H10}{f8}$	200	100 +0.6	80	18	50	160	40	M80×2	94	275	

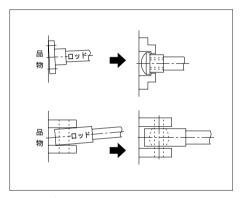
注) 先端金具は、Bロッド専用です。Aロッドで先端金具を使用される場合は、必ずAロッド先端ねじ径をBロッド先端ねじに変 更の指示をしてください。

Aロッドで先端金具とロックナットを使用する場合は、ピストンロッド先端ねじを、Bロッドの長ねじに変更の指示をしてく

寸法表 / ロックナット使用時のA寸法(長ねじ)

記号	ВП	ッド	Aロッド				
内径	А	KK	А	KK			
φ63	60	M30 x 1.5	80	M39 × 1.5			
<i>φ</i> 80	80	M39 × 1.5	95	M48 × 1.5			
φ100	95	M48 × 1.5	125	M64 × 2			
φ125	125	M64 × 2	155	M80 × 2			
φ140	140	M72 × 2	185	M95 × 2			
φ160	155	M80×2	190	M100 x 2			

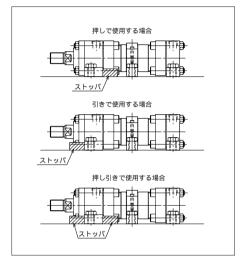
寸法表 / ロックナット


記号			Bロッド			Aロッド					
内径	部品形式	В	С	d	Н	部品形式	В	С	d	Н	
<i>φ</i> 63	LNH-30F-1-H	46	53.1	M30 x 1.5	25	LNH-39F-1-H	60	69.3	M39 × 1.5	32	
φ80	LNH-39F-1-H	60	69.3	M39 x 1.5	32	LNH-48F-1-H	75	86.6	M48 × 1.5	38	
φ100	LNH-48F-1-H	75	86.6	M48 × 1.5	38	LNH-64F-1-H	95	109.7	M64 × 2	51	
φ125	LNH-64F-1-H	95	109.7	M64 × 2	51	LNH-80F-1-H	115	132.8	M80 × 2	64	
φ140	LNH-72F-1-H	105	121.2	M72 × 2	58	LNH-95F-1-H	135	155.9	M95 × 2	76	
φ160	LNH-80F-1-H	115	132.8	M80 × 2	64	LNH-100F-1-H	145	167.4	M100 × 2	80	

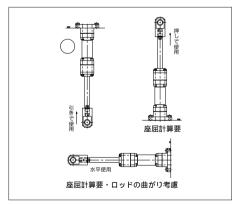
217

取付上の注意点

● 固定の場合


シリンダによって動かされる品物の運動方向は、 ピス トンロッドの運動する軸心と必ず一致しなければなり ません。もし、この軸心が振れている場合は、ブシュ の早期摩耗、シリンダチューブの焼付かじりの現象が 発生します。この軸心の不一致を確認するにはシリン ダを取付ける時に、必ずピストンロッドの出切った位 置および入り切った位置でロッドと品物の取付部の心 の狂いを測定し完全に芯を合わした後、シリンダと品 物を連結しなければなりません。なお、試運転に当 たっては出来るだけ低い圧力で運転し、円滑に作動す ることを確認してください。シリンダと品物の連結金 具もこの場合充分にしてください。

注)シリンダ本体が固定して取付けられる場合の取付部材の剛 性はシリンダの性能に大きな影響を与えます。すなわち、 取付部材の剛性が不足しているとシリンダの推力によって 取付部材にひずみを生じ、ピストンロッドとブシュにこじ れを生じて、早期摩耗をおこしたり、ピストンロッドのね じが破損したりします。取付部材は剛性のあるものを使用 してください。


1. LA形の場合

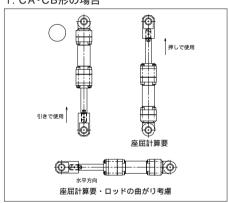
LA形の取付はL形金具の締付ボルトで固定しますが、 負荷を受けた場合には軸方向移動に対し完全とはいえ ません。そのため取付ベースの側にストッパを設けて ください。

2. FA·FB形の場合

- 長尺において直角ロッド上向き押側使用時は、座屈 計算での確認をしてください。
- 長尺において水平取付押側使用時は、座屈計算での 確認とロッドの自重による曲がりを考慮してくださ L1.

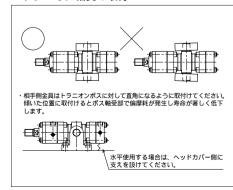
● 揺動形の場合

取付が平面内で動き得るシリンダはロッド先端の連結 金具は必ずピン等で連結し、平面内で動き得るよう取 付けてください。

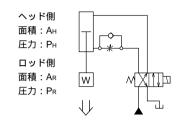

また、その平面と直角方向は固定形と同様で、芯出し には充分注意してください。

カタログ記載のピンサイズのものを使用してくださ 61.

- ●長尺において直角ロッド上向き押側使用時は、座屈 計算での確認をしてください。
- ●長尺において水平取付押側使用時は、座屈計算での 確認とロッドの自重による曲がりを考慮してくださ


連結金具の軸受け部には必ず潤滑剤を塗布してくださ L1.

1. CA·CB形の場合


2. TA·TC形の場合

▶ラニオン軸受の取付

Aロッド使用トの注意事項

Aロッドのシリンダはロッド側の受圧面積が小さく、 圧力が高くなりやすいため最高許容圧力を超えないよ うに注意してください。

下記の条件にてシリンダを前進(下降)させた場合、 ロッド側の圧力はいくらになるか

シリンダ:140L-1 φ80 Aロッド

負 荷:W=1000ka(10000N)

設定圧力: Pн = 8MPa 設置方向:ロッド下向き 速度制御:メータアウト

作動速度は遅く負荷率は100%とする。

<解答>

ロッド側に発生する圧力PRは負荷Wとつり合い発生す る圧力P1とヘッド側からの供給によりブーストアップ される圧力P2との合計となる。

負荷とのつり合いにより発生する圧力P₁について $P_1 = \frac{W}{A_R} = \frac{10000(N)}{2564(mm^2)} = 3.9(MPa)$

ヘッド側からの供給によりブーストアップされる圧 力P2について

P₂A_R = P_HA_Hより

2564(mm²)

ロッド側に発生する圧力PRは

 $P_R = P_1 + P_2 = 3.9 + 15.7 = 19.6 (MPa)$

従って標準仕様欄に示す140L-1Aロッドのロッド 側の最高許容圧力18MPa以上となり、使用不可能 となります。条件を変更のうえ再計算してくださ 61.